31=0.359x^2-7.61x+70.7

Simple and best practice solution for 31=0.359x^2-7.61x+70.7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31=0.359x^2-7.61x+70.7 equation:



31=0.359x^2-7.61x+70.7
We move all terms to the left:
31-(0.359x^2-7.61x+70.7)=0
We get rid of parentheses
-0.359x^2+7.61x-70.7+31=0
We add all the numbers together, and all the variables
-0.359x^2+7.61x-39.7=0
a = -0.359; b = 7.61; c = -39.7;
Δ = b2-4ac
Δ = 7.612-4·(-0.359)·(-39.7)
Δ = 0.9029
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7.61)-\sqrt{0.9029}}{2*-0.359}=\frac{-7.61-\sqrt{0.9029}}{-0.718} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7.61)+\sqrt{0.9029}}{2*-0.359}=\frac{-7.61+\sqrt{0.9029}}{-0.718} $

See similar equations:

| (3x-10)°=(8x+5)° | | 7x-9+5x+4x-3=180 | | 1/5x+1=3 | | 3x-10°=8x+5° | | 3x-7+7x+2+4x+3=180 | | -4x+6/2=-7 | | 80=6x-2x | | 8•x=4 | | 3(x+6)=4(2-x) | | (9x+4)+(10x+100)=180 | | -3x–5=15–x | | 2(x-3)^3-10=62 | | 2+2(5+2x)=6x+10 | | 2=x/5+1 | | 1/3*y^2=16 | | 15=3g-24 | | 51+67+67+x=90 | | 14+z=42 | | 5x-11+3x-2+121=180 | | 51+67+67+x=180 | | (2x+2)+(6x+8)=90 | | 5x-11+3x-2=180 | | (x-28)+(x+6)+(x+22)=180 | | 3x+1=-x–4 | | 12x^2-7x+8=0 | | 3.85x^2-11.44x+3.03=0 | | (3x+10)+(110-x)+2x=180 | | 12x^-7x+8=0 | | x+.03x=418324.50 | | 25=-8+(9x+27) | | x+.03x=61896.50 | | 64+n=33n |

Equations solver categories